YUJIA CHEN

Senior Software Engineer @ Google | cyj.issac@gmail.com | (412) 304-2391

PROFESSIONAL EXPERIENCE

Google Seattle, WA

Google Research, Senior Software Engineer - Machine Learning

06/2022 - now

• Designing, developing and deploying on-device computer vision models.

Amazon Seattle, WA

Prime Video (PV), Applied Scientist

06/2021 - 05/2022

- Designed algorithms for video scene understanding served for various business goals.
- Led and built an internal research dataset across different projects and teams.
- Developed and deployed models for the video compliance system, focusing on class-imbalance problems and detection

Amazon Go, Applied Scientist

01/2020 - 06/2021

- Developed and deployed visual counting algorithms for Just-Walk-Out Amazon Fresh stores that launched across the united states.
- Designed and implemented activity modeling algorithms for various in-store product types.
- Managed the workflow across the teams on large-scale data collection and deployment.

Amazon Go, Applied Scientist Intern

05/2019 - 08/2019

• Designed and implemented a multi-customer activity detection model with MXnet from scratch that achieved state-of-the-art results on MPII cooking2 dataset.

Chinese Academy of Sciences, Institute of Automation

Beijing, China

Research Intern

05/2017 - 06/2018

- Designed an occluded face detector with adversarial training methods with Caffe that outperformed state-of-the-art results by over 10% on occluded face detection benchmarks.
- Created an SOTA face detection system which was applied in the research teams in CASIA.

Laboratory of IoT&Robotics at USTB

Beijing, China

Research Assistant

09/2016 - 04/2017

- Developed a grouped-merging feature extractor with model compression methods using Pytorch and achieved state-of-the art results while reducing the model parameters to less than 1M.
- Prototyped a low-resolution object detector on the TX2 platform.

Oracle China Beijing, China

Intern 04/2016 - 07/2016

• Engaged in enterprise-level database management and analysis.

PUBLICATION

- Lan, W; Yujia, C; Wen-Sheng, C; Vishnu, B; Du, T; 2024. SEAL: Semantic Attention Learning for Long Video Representation.
- Ziqian, L; Yaojie, L; Runze, L; Yujia, C; Yixuan, L; Wen-Sheng, C; 2024. OOD Learner via In-Context Learning

- Litu, R; Yujia, C; Nataniel, R; Constantine, C; Sanjay, S; Wen-Sheng, C; 2024. Semantic Image Inversion and Editing using Stochastic Rectified Differential Equations
- Litu, R; Yujia, C; Nataniel, R; Constantine, C; Sanjay, S; Wen-Sheng, C; 2024. RB-Modulation: Training-Free Personalization of Diffusion Models using Stochastic Optimal Control
- Litu, R; Yujia, C; Abhishek, K; Constantine, C; Sanjay, S; Wen-Sheng, C; 2024 Beyond First-order Tweedie: Solving Inverse Problems using Latent Diffusion
 - o The IEEE/CVF Conference on Computer Vision and Pattern Recognition 2024 (CVPR 2024)
- Yujia, C; Lingxiao, S; Ran, H; Yibo, H. 2018. Adversarial Occlusion-aware Face Detection
 - The 9th IEEE International Conference on Biometrics: Theory, Applications, and Systems (BTAS 2018) (Oral)
- Yujia, C; Li, C. 2017. GM-Net: Learning Features with More Efficiency
 - o The 4th Asian Conference on Pattern Recognition (ACPR 2017) (Oral)

SELECTED PROJECTS

Chest X-ray Abnormalities Detection

Seattle, WA

Kaggle-single participant

Spring 2021

 Developed a chest X-ray abnormality localization model based on Yolov5 and a classification model based on EfficientNet, proposed a merging strategy as strong post-processing method. Ranked top 5% among more than 800 teams in the first round.

Self-supervised Representation Learning for Deformable Objects

Pittsburgh, PA

Carnegie Mellon University, supervised by prof. David Held

Winter 2019

 Collected a dataset for robot cloth folding and developed an unsupervised model for scene flow estimation based on SuperPoint that achieved SOTA results.

Deep Slope Estimation with Formal Verification

Pittsburgh, PA

Carnegie Mellon University, supervised by prof. David Held

Fall 2019

• Developed a model to estimate the normals of a given real-world point cloud from a velodyne, and compressed 90% of the parameters while keeping the best performance.

EDUCATION

Carnegie Mellon University – School of Computer Science GPA 4.03/4.33 Pittsburgh, PA

Master of Science in Computer Vision 08/2018 - 12/2019

University of Science and Technology Beijing (USTB) GPA 3.83/4.0 Beijing, China

Bachelor of Science in Computer Engineering - Internet of Things 09/2014 - 06/2018

SKILLS

Coding: Python, C/C++, Unix Shell, SQL, Matlab, Java, HTML

Toolkits: Pytorch, Tensorflow, MXnet, Caffe, Keras, sklearn, opency, MySQL, Git.